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Optimization of Low-Thrust Heliocentric Trajectories
with Large Launch Asymptote Declinations

Jerry L. Horsewood* and Frederick I. Mannt
Analytical Mechanics Associates, Inc., Seabrook, Md.

The problem of optimizing electric propulsion heliocentric trajectories, including the effects of geocentric
launch asymptote declination on launch vehicle performance capability, is formulated and a solution is
developed using variational calculus techniques. The model of the launch vehicle performance includes a penalty
associated with noneasterly launch plus another penalty arising from a noncoplanar launch from the parking or-
bit. Provisions for range safety constraints are included. The solution of the resultant optimization problem
requires that the launch excess velocity be offset from the initial primer vector. Mission performance for exam-
ple cases shown indicate a small to moderate performance degradation compared to corresponding cases where
declination effects are ignored.

Introduction

PRELIMINARY performance studies of heliocentric
electric propulsion missions require some means of

correlating initial spacecraft mass m0 and launch hyperbolic
excess velocity V ̂ . In most studies to date, this has been ac-
complished by equating m 0 to the launch vehicle (LV) payload
m f, which is represented as a nonlinear function of the scalar
quantity v^, the hyperbolic excess speed. With few ex-
ceptions, this LV payload capability assumed has been that
corresponding to a due-East launch from the Eastern Test
Range (ETR). The direction of the launch hyperbolic excess
velocity is usually left unspecified, and is determined as part
of the solution to the optimization problem. With the indirect
optimization technique, the solution dictates that V'«, be
directed along the initial primer vector, a requirement that
may be in conflict with the assumed LV payload capability.

If the point of the (coplanar) injection from a circular
parking orbit is properly chosen, the geocentric declination 6
of the hyperbolic excess velocity may lie within the range

where / is the equatorial inclination of the parking orbit
established by the launch vehicle. If the launch excess velocity
asymptote declination, as determined by the solution to the
optimization problem, falls within this range and if the LV
payload capability is compatible with the orbit inclination /,
then the solution is consistent within the assumptions made
and the results are valid. However, if 161 >/, then the basic
assumptions regarding LV capability are in conflict, and it is
necessary to formulate the optimization problem to account
for the depencence of LV payload on direction of the launch
excess velocity asymptote.

Although the validity of published high asymptote
declination solutions which neglect the influence of
declination on LV capability has been questioned for some
time, no formal treatment of the problem has been noted in
the literature. The authors had previously developed2 a
technique for adjusting the LV payload to account for the
noncoplanar injection maneuver required to achieve the
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geocentric declination of the primer vector, which was
colinear with K^, but this a posteriori correction approach
has proved unacceptable because the original transversality
conditions were no longer valid. Typically, these conditions
resulted in "solutions" which were not stationary points. This
condition arose because the alignment of V^ with the initial
primer was no longer a necessary condition of optimality, but
rather an imposed constraint which was in violation of the
assumptions used in originally formulating the solution.

In this paper, a unified treatment of the high asymptote
declination problem is presented. The LV payload capability
is modeled as a function not only of the magnitude of V^ but
also of the inclination of the circular parking orbjt and of the
declination of the launch asymptote. The formulation permits
the optimization of both the parking orbit inclination and
asymptote declination or of the asymptote declination subject
to a limitation on parking orbit inclination to satisfy range
safety constraints. The necessary conditions of optimality are
derived for a typical comet or asteroid rendezvous problem.
Example problems which exhibit the high asymptote
declination characteristic are then solved and the results are
discussed.

Problem Formulation
High launch asymptote declinations frequently arise in

missions to targets that have orbits highly inclined to the eclip-
tic, such as those to certain comets and asteroids. Therefore,
we select, for illustrative purposes, an optimal rendezvous
mission to a single, massless target whose path is defined by a
specified ephemeris. The extension of the results derived here
to other missions of interest, such as flybys, orbiters, and
multiple-targer missions, is straightforward. We shall also
assume a propulsion system of fixed size in terms of mass and
reference power. Also, overall propulsion system efficiency
and the specific impulse of the thruster subsystem are
assumed given and are held constant throughout the mission.

The spacecraft is composed of several mass components as
follows:

(2)

where m0 is the initial spacecraft mass, mps is the specified
mass of the total propulsion system including arrays,
thrusters and power conditioners, mp is the propellant mass,
mt is the tankage mass, ms is the structure mass, and mn e t , is
the net spacecraft mass, which is to be maximized. The
propellant mass is conveniently expressed in terms of the final
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mass ratio v'f
= m0(l-vf) (3)

denote Avi9 is adequately approximated with a quadratic
curve fit of the form

and the tankage and structure masses are assumed to be linear
functions of the propellant and initial spacecraft masses,
respectively

mt = ktmp (4a)

ms = ksm0 (4b)

where kt and ks are specified constants. The initial spacecraft
mass is assumed to equal the launch vehicle payload
capability, mr

A solar electric propulsion system shall be assumed where
the instantaneous power developed by the arrays varies with
the distance from the sun according to a specified law, which
we denote y ( r ) , with' r being the solar distance in AU.
Mathematically, we write the instantaneous power p, in terms
of the reference power /?ref at 1 AU as

Under these assumptions the instantaneous thrust ac-
celeration a is written

(5)a=2^yp ref / vm Oc = gy/ v

where 77 is the overall propulsion system efficiency, v is the in-
stantaneous mass ratio, c is the jet exhaust speed, and g
represents a reference thrust acceleration which is equal to the
thrust developed at 1 AU divided by the initial spacecraft
mass.

The launch vehicle payload capability is assumed to follow
the simple exponential law

where b}} b2, and b3 are predetermined constants for each
launch vehicle, and vc is a characteristic speed representative
of the energy required to achieve a specific escape trajectory.
For example, for a due-East launch from ETR and a coplanar
injection maneuver, vc is defined to be the speed required at
departure from a low-altitude circular reference orbit to
achieve a specified hyperbolic excess speeed t^, i.e.,

(7)

where u0is circular satellite speed in the reference orbit. Thus,
for due-East launches and coplanar injection maneuvers, mf is
a function only for v ̂  for a given launch vehicle. Per-
formance data for a large selection of existing and potential
launch vehicles are presented graphically in Ref. 1 as a func-
tion of vc, as previously defined with the reference orbit
altitude being 185 km. The authors have found a least-squares
curve fit to the exponential law above using, say 7-10 data
points from a given payload curve to be quite adequate and
accurate representation of the performance capability of a
launch vehicle.

To accommodate large launch asymptote declinations, the
same exponential law for launch vehicle payload may be used,
but the definition of characteristic speed must be expanded to
reflect the additional energy required to rotate the asymptote.
This new definition of vc is taken to be that given above plus
the velocity penalties associated with the asymptote rotation.
The rotation is assumed to be accomplished by first choosing
a launch azimuth which establishes a given reference orbit in-
clination / followed by a noncoplanar injection maneuver
from that circular reference orbit to the desired asymptote.
The velocity penalty incurred with non-due-East launches
from the ETR is shown graphically in Ref. 1 as a function of
the orbit inclination. This velocity penalty, which we will

At; i = c j i2 + c2i + c3 (8)

Normal range safety limitations restrict the range of in-
clinations achievable through varying the launch azimuth
alone. The referenced graph indicates that the maximum
allowable northerly azimuth will yield an orbital inclination
of about 48.5°, while the maximum allowable southerly
azimuth will yield an inclination of about 32°. Now, given a
reference orbit inclination /, it remains to define the velocity
penalty At>g associated with a noncoplanar departure from
this circular orbit to the desired hyperbolic excess velocity .at a
declination 6. Assuming the line of nodes of this reference or-
bit is an open variable, one may choose this variable to
minimize the angle between the excess velocity and the orbital
plane. This minimum angle is b — i. Gunther3 has shown that
the minimum incremental velocity required to achieve a given
v oo along an asymptote not lying in the orbital plane from a
specified circular orbit is obtained from the solution to a
quartic equation in the sine of the out-of-plane angle.
Defining

q=s2(l-s2)p2

x=(((q/2)2+(p/3)3)v>+q/2]y>

w=V2{p/2+y+[(p/2+y)2

+ 4(x/2+(x2/4+s2)*) ] * }

(9a)

(9b)

(9c)

(9d)

then Gunther's solution for the magnitude of the minimum
velocity impulse required to accomplish the maneuver is

(10)

and the penalty Avg is the difference between v? and the
velocity increment required if the out-of-plane angle is zero,
i.e.,

Avg = vg-[(v2
00+2v2

0)y>-v0]

Thus, the definition of the characteristic speed for those cases
in which the asymptote declination lies outside the interval
given in Eq. (1) is

vc = (v^ + 2v2
0) Vl

(11)
We shall employ this definition in the formulation of the
solution to the optimization problem.

State and Adjoint Equations

The second-order differential equation governing the
motion of a low-thrust spacecraft in heliocentric space is

(12)

where R is the heliocentric position vector, r is the magnitude
of R, n is the gravitational constant of the sun, e, is a unit vec-
tor in the direction of thrust, and h a is a step function equal to
one when the low-thrust engines are operating, and equal to
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zero otherwise. Since the thrust direction, as a function of
time, and the engine switching times are to be determined
from the solution to the optimization problem, both et and
h0 are control variables. The mass ratio satisfies the first-
order differential equation

v=-hagy/c (13)

while 7 is determined from a given algebraic equation as a
function of r, /* is a known constant, and g and c are constants
over the mission. For the problem statement previously given,
c is specified, and g is defined by Eq. (5) to yield the,desired
reference power. Since the value of g is unknown, it is con-
venient to treat g as a state variable satisfying the equation

8 = 0 (14)
with the initial condition being determined as a portion of the
solution to the optimization problem. The Eqs. (12-14) con-
stitute the state equations for the problem under con-
sideration.

Applying the standard rules of the calculus of variations to
these state equations, we find the corresponding adjoint (or
co-state) equations may be written by insepction as follows

A =h0gy'

where 7' =dy/dr, A is the familiar primer vector which is ad-
joint to the velocity, and X,, and \g are adjoint variables
associated with the mass ratio and reference thrust ac-
celeration, respectively.

Boundary Conditions
The numerical solution of the state and adjoint equations

requires the specification of the initial values of each of the
variables. Some of these initial conditions are completely
specified by the problem statement, while others must be
determined to satisfy desired final conditions. The initial
position R0 may be regarded as a function of launch date t0
only, i.e.,

where P( is the position of the launch planet as defined by a
prespecified ephemeris. The spacecraft initial velocity in
heliocentric space is taken to be the vector sum of the velocity
of the launch planet and the hyperbolic excess velocity V^ at-
tained with the specified launch vehicle.

Both the magnitude and direction of V ̂  are unspecified and
therefore must be determined in the solution of the op-
timization problem. The initial mass ratio is, by definition,

where Pt is the position vector of the target as defined by the
specified target body ephemeris at the final time tf. The initial
values of X,, and Xg are also unknown and must be selected to
satisfy appropriate transversality conditions as described
following.

Optimality Conditions
The necessary conditions of optimality for the problem

posed are easily derived by applying the maximum principle to
the variational Hamiltonian hv, which is a constant of the
motion and is defined

hv = A -R - A -R + X> + \gg

The proper choice for the value of ha is seen to depend on the
sign of the switch function a, where

Since gy/v must be nonnegative to have any physical
significance, hv is maximized with respect to ha by choosing
ha=0 if a<0, ha — \ if a>0, and with respect to et by
choosing

where X = I A l . These well-known results constitute the
definition of the optimal control variables of the problem. We
now define the conditions for selecting any open end con-
ditions which, for the problem under consideration, are the
launch excess velocity, the inclination of the launch parking
orbit and, possibly, the launch and/or arrival dates. The con-
ditions that are sought are termed transversality conditions
and are obtained from the general equation

(16)

subject to all constraints imposed in the formulation.
Reorganizing Eq. (2) and substituting Eqs. (3) and (4)

yields wnet

t- (l + kt)vf] -mp

such that

where, from Eq. (6)

(17)

Clearly, the definition of the total differential dvc is the key to
optimizing the launch conditions for high asymptote cases.
For the familiar case in which vc is defined by Eq. (7) and is a
function only of v «, , one obtains

whereas g ( t 0 ) = g is obtained from Eq. (5); i.e.,

(15)

The initial primer A0 and its time derivative A0 are both
unknown but must be chosen so as to satisfy the desired final
conditions in position and velocity which, for rendezvous
problem, are

Rf=P,(tf)
Rf=Pt(tf)

However, for the high declination case in which vc is given by
Eq. (1 1), the differential dvc is

dvc = (dvg/dv00)dv00+(dvg/dd)dd

where, from Eq. (8)

and from Eqs . (9) and (10)

d v g / d i = - d V g / d d



OCTOBER 1975 OPTIMIZATION OF LOW THRUST HELIOCENTRIC TRAJECTORIES 1307

The derivation of the partial derivatives dVg/dv^ and dvg/dd
is straightforward, although somewhat cumbersome. The
equations are presented in the Appendix.

From the stated boundary conditions, the following dif-
ferentials are written by inspection:

dRf=Ptdtp

dRf=Ptdtf,

and, since g is a constant

To avoid unnecessary algebraic manipulations later, it is
convenient at this point to replace the vector differential dV^
in favor of differentials of parameters already appearing in
the problem, which include dv^ and dd. In general, any vec-
tor may be uniquely defined in terms of its magnitude and
rotations about two arbitrary orthogonal unit vectors, say a
and 6, provided _the original vector is not contained in the
plane of a and b. Denoting as a. and p the rotation angles
about a and b, respectively, then dV^ may be written

(ax (bx

To simplify subsequent algebraic relations, one may choose a
and b such that one of the angles, say /3, is equal to 6. This is
accomplished by choosing a in the direction of the earth's
North Pole, i.e., along the vector np, and defining

Thus, a represents the right ascension of the departure asymp-
tote and ]8 is the declination. Substituting the differentials
previously defined into Eq. (16) and collecting coefficients of
all remaining differentials yields

/dv^)-(A0-V00) /Voo ]dv00

+ Lf(dvg/dd)-A0-(bxV00)]dd-A0-(npxVQO)da

+ (ArPl-ArPt-hv)dtf

-(A0-Pf-A0-P(-hv)dt0

where

(19)

t-(l + kt)vf-g(\gr-\go)/m0](dmt/dvc) (20)

with dm(/dvc being the coefficient of dvc in Eq. (17). Since
each of the differentials in Eq. (19) is independent of the
others, its coefficient must vanish, thereby yielding the
remaining necessary conditions. Thus

For optimum launch parking orbit inclination

f(dAv;/di-dvg/dd)=0 (21)

For optimum launch excess speed

f(dvg/dvQO)-(A0-V00)/vQO=0 (22)

For optimum launch asymptote declination

f(dvg/dd)-A0-(bxV00)=0

For optimum launch asymptote right ascension

-A0-(npxV^)^0

For optimum launch date

hv + A0-P(-A0'P( = 0

For optimum arrival date

ArPt-ArPt-hv=0

For optimum final mass ratio

(23)

(24)

(25)

(26)

(27)

If in any specific problem an end condition which previously
was assumed open is, in fact, specified, then its differential is
zero and its coefficient need not vanish. For example, if the
inclination of the parking orbit resulting from the satisfaction
of Eq. (21) above exceeds a range safety limit, then it is
necessary to fix / at that limit and ignore the transversality
condition, Eq. (21). Also, if the launch date and/or arrival
date is specified, then the corresponding transversality con-
ditions, Eqs. (25) or (26), respectively, are ignored. Or if both
launch and arrival dates are unspecified but flight time is
fixed, then dtf = dt0 and Eqs. (25) and (26) are replaced in
favor of one condition represented by their sum; i.e.

A number of observations may be made at this point, which
facilitate the understanding and implementation of the
transversality equations. First, one will note that the variable
Xg never appears on the right-hand side of the state or adjoint
equations and is not required in determining the optimal con-
trol. The only place \ appears is in Eq. (20) for/, and there
only in the form (X^ — X g 0 ) . Consequently, the choice of \g0
is completely arbitrary, having no bearing on the solution.
Thus, for convenience, one may use as an initial condition

Secondly, Eq. (24) implies that the right ascension of V^
must be equal to, or 180° from, that of A^; i.e., V^ mustjie
in the plane of A0 and np. Then also bx F^, where b is
defined by Eq. (18), must also lie in this plane. If the first term
in hq. (23) were zero, which is the result obtained when the ef-
fects of declination are ignored in the formulation, then one
obtains from Eqs. (23) and (24) the familiar result that V^
must be colinear with A0. Usually, it is assumed that V^ is
aligned with A0, however cases have been found4 for which
the optimum solution resulted in V^ being diametrically op-
posed to A0. The fact that the first term in Eq. (23) is nonzero
means that V^ will be offset from A0 by a finite angle. This
offset, as previously noted, must be in the plane of A0 and np
and, intuitively, we know it must be in the direction of the
equator so as to reduce vc. The amount of the offset of V^
from A# may not be determined from Eq. (24) as an initial
value problem since the variable/is a function of variables ( v
and \g) evaluated at the final time. Thus, <5 must be treated as
an additional independent parameter, and Eq. (23) becomes
another condition to be satisfied in the boundary value
problem.

Finally, the satisfaction of Eq. (21) requires that the term
within parentheses vanishes since/will normally be a nonzero
quantity. Therefore, since the two partial derivatives are func-
tions only of initial conditions, one may solve for the / that
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causes the parenthesized term to vanish and thereby eliminate
the condition, Eq. (21), from the boundary value problem.
Due to the complexity of the equations defining dvg/dd, this
solution for / must be obtained using an iterative technique.

The approach to the solution of the problem as previously
formulated differs in three basic respects from that of the
problem where asymptote declination is ignored: 1) the con-
dition, Eq. (21), must be solved for the optimum parking or-
bit inclination, given values of v^ and 5; 2) the asymptote
declination 6 must be introduced as an independent parameter
and Eq. (23) added as an end condition of the problem; and 3)
the evaluation of V^ becomes somewhat more involved. The
computation of V^, given v^, A0, and 5, proceeds as
follows. Denote as e the obliquity of the ecliptic such that the
matrix

0 0

0 cose —sine

0 sine cose

operating on a vector expressed in ecliptic Cartesian coor-
dinates yields the same vector in earth equatorial coordinates.
Then the right ascension ax of the initial primer A0 may be
written

= tan ~7 [ (X^cose- ) /\x

where \x0, \y0, Xz0 are the given ecliptic coordinates of A0.
Then, the right ascension of the asymptote is set

and V '<.„ is evaluated

= ax or ce =

cosacos6

sin6
This may be contrasted with the usual definition of V '

Sample Problems
The solution described in the preceding paragraph was im-

plemented in the variational calculus computer program
HILTOP, and several specific trajectory studies have been
performed, employing the Titan III E/Centaur/Sert 3
spacecraft launched from the ETR. The basic results of two of
these studies are presented below. The first mission con-
sidered is the 45 ° extra-ecliptic mission terminating in a 1 AU
circular orbit, and the second is a multiple target mission,
launched in March 1985, flying past the two asteroids Metis
and Amherstia, and terminating at rendezvous with the
Comet Encke 30 days before perihelion in 1987. The results
achieved for these missions are felt to be typical of those
requiring nominally high launch asymptote declinations.
These results are summarized in Figs. 1 and 2 as functions of
the circular parking orbit inclination /.

In these figures, 6^ is the launch asymptote declination (of
Fa,) and <5X is the declination of the initial primer vector, A0,
along which the thrust vector of the low thrust spacecraft is
initially oriented. These parameters, along with the excess
speed, v^ , the initial mass injected into heliocentric space,
m0y and the low-thrust propellant mass, mp, are plotted as
functions of parking orbit inclination from / = 32.5° up to the
value of / at which the final mass m0-mp reaches a
maximum. Since the assumed range safety limit of the Titan
III E/Centaur is / = 32.5° , all of the data in the plotted curves
except the leftmost points (at / = 32.5°) are actually not
allowable for that launch vehicle, but could be achieved by

30 40 50
i (deg)

a) Earth Departure Parameters.

30 5040
i (deg)

b) Initial and Propellant Masses.

Fig, 1 Extra-ecliptic mission.

i
30 50 70

i (deg)
a) Earth Departure Parameters

- m (A)

(B)

30 50 70
i (deg)

b) Initial and Propellant Masses

Fig. 2 Multiple target mission.
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that vehicle if the range safety constraint were relaxed. The
plotted curves may, therefore, be considered to represent the
general behavior of an arbitrary launch vehicle.

Some general trends are apparent upon inspection of the
figures. As inclination increases, the excess speed v^, which is
optimized, tends to increase along a curve similar to m0,
which is a behavior opposite to the simplistic dependence of
m0 on vw usually assumed. m0 increases in the face of in-
creasing v a, because the noncoplanar burn angle 16^ I — / out
of the parking orbit decreases with increasing /, becoming
very small where m0 peaks. The offset angle of the initial low
thrust vector, I<5 X — 5^ I , also decreases with increasing /'. The
low-thrust propellant variation is very small as / varies. (The
corner in the mp curve of Fig. 2 is due to the introduction of a
coast phase in the trajectory at lower values of /).

Points in the figures marked (A) were generated under the
assumption of ignoring the departure asymptote declination,
as has been done in most published solutions to date. These
points therefore, represent erroneously optimistic data.

Points marked (B) were generated under the assumption of
a coplanar injection out of the parking orbit, such that the
launch vehicle is forced to launch into a parking orbit having
an inclination equal to the departure asymptote declination.
In the figures, these points correspond to \d6o I =/ = 32.5°, the
assumed range safety limit of the Titan III E/Centaur. These
points, therefore, represent missions in which the parking or-
bit inclination is not optimized, and the low-thrust spacecraft
must provide additional plane-change energy to compensate
for the constrained launch vehicle performance, even though
the launch vehicle provides more v ̂  to the low-thrust
spacecraft. This represents a valid option in terms of per-
forming the launch phase of a mission, and the penalty in-
curred appears to be small unless the departure asymptote
declination is exceedingly large.

For the extra-ecliptic mission in Fig. 1, the optimal asymp-
tote declination at point (A) is about —52° and the final
spacecraft mass is 703 kg. This will be termed the reference
case in the comparisons following. Upon including the
declination effects in the launch vehicle model, the optimum
parking orbit inclination becomes 49.7° and the asymptote
declination drops to —50.6°. This implies that the final laun-
ch injection maneuver is only 0.9° out of the parking orbit
plane and illustrates the fact that high declinations are
achieved at less cost with inclination changes than with out-
of-plane injections. The declination of the initial primer vec-
tor is —55° , representing an offset angle of the hyperbolic
asymptote of about 4.6°. The final spacecraft mass for this
case is 691 kg, representing a loss of about 1.7%, compared to
the reference case. Constraining the parking orbit inclination
to the assumed range safety limit of 32.5° results in somewhat
more severe penalties. The asymptote declination for this
limiting inclination is —39.2°, representing an out-of-plane
injection angle of about 6.7°. The declination of the initial
primer is —68.5°, which corresponds to an asymptote offset
angle of 29.3°. The final mass is 657 kg, representing a loss of
6.5% compared to the reference case. Finally, for the case in
which the asymptote is forced to lie in the 32.5° inclined
marking orbit plane, the asymptote offset angle jumps to
-39° and the final mass drops to 638 kg, a loss of 9.2%,
compared to the reference case.

Considerably more substantial penalties are observed for
the multiple target mission, principally because the nominal
asymptote declination of —72.7° for the reference case [i.e
point (A)] represents a more severe problem to overcome.
The final mass for the reference case is 695 kg. When the
asymptote declination effects are introduced into the solution,
the parking orbit inclination optimizes to a value of 68.2°, the
asymptote declination becomes —69.5°, and the primer
declination is —74.8°. Again the out-of-plane injection angle
and the asymptote offset angle are quite small for this fully
optimized case. The final mass is off less than 1% to 688.5 kg.
Restricting the parking orbit inclination to 32.5° leads to an

asymptote declination of —46.8°, corresponding to an out-
of-plane injection angle of 14.3°, and to a primer vector
declination of —95.6°, representing an asymptote off-set
angle of 48.8°. Note that the primer vector has actually swept
through the South Pole (corresponding to <5X = -90°), and,
therefore, the right ascension of the primer and excess velocity
vectors differ by TT rad. The final mass drops nearly 100 kg to
597 kg, a loss of about 14%. By further restricting the
solution to force the launch asymptote to lie in the 32.5° in-
clined parking orbit plane, an additional significant penalty is
incurred resulting in an overall loss of final mass of 27.6%.
The final mass for this case is 503 kg and the asymptote offset
angle is 85.4°.

Conclusions
From the two cases discussed, it appears that the ac-

comodation of trajectories with high asymptote declinations
is possible with a very minor performance penalty if range
safety constraints are not imposed. In such a case, one simply
accepts the relatively small launch vehicle azimuth penalty
and establishes a parking orbit inclination nearly equal to the
original asymptote declination. From this orbit, an injection
maneuver with a small out-of-plane angle leads to a solution
representing a performance loss of less than 1% for both
missions investigated. The imposition of range safety con-
straints results in much more significant performance
penalties. Limiting the parking orbit inclination to 32.5°
resulted in a performance penalty of 6.5% for the extra-
ecliptic mission where the original asymptote declination was
— 52°, and a penalty of 14% for the multiple target mission
with an original declination of —72.7°. Further constraining
the solution to force the asymptote to lie in the parking orbit
plane increases the performance penalty by an amount
ranging from negligible to significant, depending on the
severity of the original declination problem. For the multiple
target mission, this latter constraint alone accounted for a
13.6% performance degradation.

Finally, it should be noted that the analysis developed here
is general and may be applied to any launch vehicle, launch
site, or set of range safety constraints. It may also be applied
to purely ballistic or high thrust heliocentric trajectories,
although the option of forced coplanar launch will not be
generally available if there exists no other propulsive means of
subsequently changing the trajectory to target the spacecraft.
The numerical approach outlined herein has been successfully
implemented in a variational calculus computer program, and
the ability to obtain optimal and suboptimal solutions ef-
ficiently under a variety of constraints has been proved.

Appendix
The equations for the partial derivatives dv^/dv^ and

dvg/dd are derived from Eqs. (9) and (10) and are listed
following:

dvg v2
0 dp__ w(3 + 2pw-w2)(dp/dv00)

(3p + 2p2w-3pw2-4w)(dw/dv00)

— 3pw2 —4w)
dd 2v^

where
dp/dv00 = l/v0

dw ,, ,,, <*P

- 1 ( 1 +
dx

* dvc
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a.y dx

d y / d v 0 0 = [ ( p / 2 ) d p / d v a o - d x / d v a o ] / 2 y

d y / d d = - ( d x / d d ) / 2 y

dx_ = j_
du ~ ~6

+ ^-]
du

(q/2) (dq/du) + (p/3)2 (dp/du)
( ( Q / 2 ) 2 + ( p / 3 ) 3 ) l / 2

1_ (q/2) ( d q / d u ) + ( p / 3 ) 2 ( d p / d u )
~6 ((q/2)2+(p/3)3)l/2

du

with

u = v00 or 6,

a^/a^oo =2ps2 (/ -5

dq/dd=2P
2s(l-2s2)(ds/dd)

dp/dv00=2ps2(dp/dv00)

dp/dd=2s(P
2 + 4)(ds/dd)
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